Extensions 1→N→G→Q→1 with N=C23 and Q=S3×C9

Direct product G=N×Q with N=C23 and Q=S3×C9
dρLabelID
S3×C22×C18144S3xC2^2xC18432,557

Semidirect products G=N:Q with N=C23 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C23⋊(S3×C9) = C18×S4φ: S3×C9/C9S3 ⊆ Aut C23543C2^3:(S3xC9)432,532
C232(S3×C9) = C2×S3×C3.A4φ: S3×C9/C3×S3C3 ⊆ Aut C23366C2^3:2(S3xC9)432,541
C233(S3×C9) = C18×C3⋊D4φ: S3×C9/C3×C9C2 ⊆ Aut C2372C2^3:3(S3xC9)432,375

Non-split extensions G=N.Q with N=C23 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C23.(S3×C9) = C9×A4⋊C4φ: S3×C9/C9S3 ⊆ Aut C231083C2^3.(S3xC9)432,242
C23.2(S3×C9) = Dic3×C3.A4φ: S3×C9/C3×S3C3 ⊆ Aut C23366C2^3.2(S3xC9)432,271
C23.3(S3×C9) = C9×C6.D4φ: S3×C9/C3×C9C2 ⊆ Aut C2372C2^3.3(S3xC9)432,165
C23.4(S3×C9) = Dic3×C2×C18central extension (φ=1)144C2^3.4(S3xC9)432,373

׿
×
𝔽